CYCLOADDITIONSREAKTIONEN DES HEPTAFULVALENS

Ihsan Erden und Dieter Kaufmann
Institut für Organische Chemie und Bi∩chemie der Universität
Hamburg, M.-Luther-King-Platz 6, D-2000 Hamburg 13, Germany

The cycloaddition reactions of heptafulvalene with singulet oxygen, CSI and PTD have been investigated.

Mit seinem gekreuzt konjugierten 14π -Elektronensystem könnte Heptafulvalen (1) zu einer Reihe unterschiedlicher Cycloadditionsreaktionen befähigt sein (2). Um so mehr erstaunt, daß über seine Chemie bis heute nur wenig bekannt ist (3,4). Wir haben deshalb 1 mit drei Cyclophilen umgesetzt, deren unterschiedliches Additionsverhalten an Doppelbindungssysteme erstmals experimentelle Hinweise auf die elektronische Struktur von 1 liefern sollte.

Singulett Sauerstoff (102) kann mit geeigneten Olefinen wie Cycloheptatrienderivaten (5) [2+2]-, [2+4]- und sogar [2+6]-Addukte bilden. Photooxidation von 1 in CDCl3 bei -60°C (6) ergab eine Mischung von Tropon, Benzaldehyd und Benzol im Verhältnis 3:2:1. Dieses Produktspektrum macht wahrscheinlich, daß das Dioxetan 2 als Zwischenprodukt gebildet worden war. In einer Folgereaktion konnten aus dem elektronisch angeregten 3 Benzaldehyd und Benzol entstehen. Alle Versuche, 2 durch Tieftemperatur-1H-NMR-Spektroskopie nachzuweisen, schlugen fehl.

Offensichtlich war die Lebensdauer bei -60° C zu kurz für eine Charakterisierung. Die Bildung des [2+2]-Adduktes $\underline{2}$ deutet auf eine gespannte zentrale Doppelbindung von $\underline{1}$ hin.

Die Umsetzung mit dem für [2+2]-Cycloadditionen mit Olefinen bekannten Chlorsulfonylisocyanat (CSI) bei -78° C lieferte glatt das Addukt $\underline{5}^{(7)}$. Seine Bildung ist durch eine $[8\pi + 2\pi]$ -Cycloaddition von $\underline{1}$ erklärbar, die zunächst zu dem instabilen Primärprodukt $\underline{4}$ führt, welches anschließend in einer [3,3]-Verschiebung(8) $\underline{5}$ ergibt. Damit erhält man zunächst den gleichen Strukturtyp wie bei der Addition von Acetylendicarbonsäuredimethylester an Heptafulven(9) oder substituierte Sesquifulvalene(2). Dagegen bildet Cycloheptatrien mit CSI primär ein [2+2]-Addukt(10), das sich dann im Verlauf der Reaktion in ein [6+2]-Addukt umlagert.

Die basische Hydrolyse lieferte eine Verbindung, die chromatographisch (Florisil, Ether/Methanol 9: 1) als orange Prismen isoliert werden konnte. Aufgrund aller spektroskopischen Daten kam ihr eindeutig die Struktur $\underline{6}^{(11)}$ zu. Während der Aufarbeitung muß demnach eine Dehydrierung durch Luftsauerstoff unter Bildung des stabilen Azaazulenons eingetreten sein.

Im Gegensatz zu CSI ist 4-Phenyl-1,2,4-triazolin-3,5-dion (PTD) bekannt für seine außergewöhnliche Reaktivität als Dienophil in Cycloadditionsreaktionen. Auch in diesem Fall führte die Umsetzung mit $\underline{1}$ schon bei -78° C quantitativ zu einem kristallinen 1:1-Addukt⁽¹²⁾. Anhand seines 1 H-NMR-Spektrums und von Entkopplungsexperimenten wurde die Substanz als ein Gemisch beider $[14\pi + 2\pi]$ -Addukte identifiziert.

Die Stereochemie des Hauptproduktes $\underline{7}$ ist mit einer nach den Regeln von Woodward und Hoffmann erlaubten synchronen $\begin{bmatrix} \pi^{14} & + \pi^{2} \\ \end{bmatrix}$ -Cycloaddition vereinbar, die schon bei der Reaktion von Heptafulvalen mit Tetracyanethylen beobachtet worden war $^{(4)}$. Für die Bildung des <u>cis</u>-Adduktes dürfte allerdings

eine dipolare Zwischenstufe verantwortlich sein.

Die Variierung des Lösungsmittels (Chloroform, Aceton, Acetonitril) und der Reaktionstemperatur hatte jedoch keinen Einfluß auf die Produktzusammen-setzung.

Die Autoren danken Prof. Armin de Meijere, Universität Hamburg, für die Unterstützung dieser Arbeit.

Literaturzitate und Anmerkungen

- (1) W. M. Jones, C. L. Ennis, <u>J. Amer. Chem. Soc. 91</u>, 6391 (1969).
- (2) H. Prinzbach, Pure Appl. Chem. 1971, 281 (1971).
- (3) W. von E. Doering in "Theoretical Organic Chemistry", The Kekulé Symposium, Academic Press, New York N.Y., 1959, S. 44.
- (4) W. von E. Doering, persönliche Mitteilung, cit. in R. B. Woodward und R. Hoffmann, Angew. Chem. 81, 832 (1969).
- (5) W. Adam, M. Balci, O. Cueto, B. Pietzrak, <u>Tetrahedron Lett.</u>
 43, 4137 (1979).
- (6) 250 W-Natriumdampflampe, Sensibilisator: Tetraphenylporphyrin (TPP).
- (7) Ausbeute 95%; ¹H-NMR (CDCl₃, TMS), § = 3.47 (m, 1H), 3.50 (m, 1H), 3.80 (m,1H), 5.03 (br. s, 1H), 5.67 (m, 1H), 5.86 (m, 2H), 5.96 (m, 1H), 6.15 (m, 1H), 6.35 (m, 1H), 6.64 (m, 2H) ppm.
 IR (film): 3055, 2970, 2930, 1748, 1638, 1408, 1190 cm⁻¹.
- (8) E. J. Moriconi, C. F. Hummel, J. F. Kelly, <u>Tetrahedron Lett.</u> 60, 5325 (1969).
- (9) W. von E. Doering, D. W. Wiley, <u>Tetrahedron Lett.</u> 11, 183 (1960).

- (10) s.a. M. Morita, T. Asao, N. Iwagame, Y. Kitahara, <u>Chem. Lett.</u> 67 (1973).
- (11) Fp = 236° C (Z); Ausb. 80%; ¹H-NMR (CDCl₃, TMS); δ = 4.07 (m, 1H), 4.28 (m, 1H), 6.15 (m, 2H), 6.52 (m, 2H), 6.86 (m, 1H), 6.98 (m, 1H), 7.1 (m, 2H) ppm. IR (KBr): 3420, 3050, 2940, 2860, 1655, 1642, 1630, 1580, 1338 cm⁻¹.
- (12) Fp. 185 187°C; Ausb. 88%; 1 H-NMR (CDCl₃, TMS)
 a) $\underline{\text{trans}}$: $\boldsymbol{\delta}$ = 3.73 (d, 2H), 5.61 (dd, 2H), 6.39 (m, 2H), 6.58 (d, 2H), 6.79 (m, 4H), 7.33, 7.42, 7.53 (m, 5H) ppm.
 - b) separierte Signale des <u>cis</u>-Isomeren: δ = 4.10 (d, 2H), 5.55 (dd, 2H), 6.32 (m, 2H) ppm.

(Received in Germany 22 February 1980)